Deep Reinforcement Learning

David Silver, Google DeepMind

Lecture slides - AI4Good Summer Lab - 2019
Slides merged from two different talks/lectures of David Silver

Khimya Khetarpal
Lecture slides - AI4Good Summer Lab - 2019
Slides merged from two different talks/lectures of David Silver

Agent and Environment

acti

a

ion

t

> At each step t the agent:
» Receives state s;
» Receives scalar reward r;
» Executes action a;
» The environment:
» Receives action a;
» Emits state s;
» Emits scalar reward r;

Policies and Value Functions

» Policy 7 is a behaviour function selecting actions given states
a=mn(s)

» Value function Q7 (s, a) is expected total reward
from state s and action a under policy 7

Q7(s,a) = E [”t+1 + Y2+ Vrep3 + o | s, 3]

“How good is action a in state s?”

Lecture 6: Value Function Approximation

L Introduction

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

020

m Backgammon: 10-" states

0170

m Computer Go: 1 states

m Helicopter: continuous state space

Lecture 6: Value Function Approximation

L Introduction

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

020

m Backgammon: 10-" states

0170

m Computer Go: 1 states

m Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?

Lecture 6: Value Function Approximation

L Introduction

Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V/(s)
m Or every state-action pair s, a has an entry Q(s, a)

m Problem with large MDPs:

m There are too many states and/or actions to store in memory
m It is too slow to learn the value of each state individually

m Solution for large MDPs:
m Estimate value function with function approximation

U(s,w) =~ v, (s)

or §(s,a,w) =~ g, (s, a)

m Generalise from seen states to unseen states
m Update parameter w using MC or TD learning

Lecture 6: Value Function Approximation

L Introduction

Types of Value Function Approximation

Lecture 6: Value Function Approximation

L Introduction

Which Function Approximator?

There are many function approximators, e.g.
m Linear combinations of features
m Neural network
m Decision tree
Nearest neighbour

"
m Fourier / wavelet bases
"

Lecture 6: Value Function Approximation

L Introduction

Which Function Approximator?

We consider differentiable function approximators, e.g.

Linear combinations of features

m Neural network

m Decision tree

m Nearest neighbour
m

Fourier / wavelet bases

Furthermore, we require a training method that is suitable for
non-stationary, non-iid data

Lecture 6: Value Function Approximation

L Incremental Methods

L Gradient Descent

Gradient Descent

m Let J(w) be a differentiable function of
parameter vector w

m Define the gradient of J(w) to be

oJ(w)
owq

Vwl(w) =

0J(w)
OwWp,

m To find a local minimum of J(w)

m Adjust w in direction of -ve gradient

1

where « is a step-size parameter

Lecture 6: Value Function Approximation
LIncremental Methods

LIncremental Control Algorithms

Action-Value Function Approximation

m Approximate the action-value function
4(S, A,w) = (S, A)

m Minimise mean-squared error between approximate
action-value fn §(S, A,w) and true action-value fn g,(S, A)

J(W) =Eg [(qﬂ'(S?A) - fI(S,A,W))Z]
m Use stochastic gradient descent to find a local minimum

S V(W) = ((5.4) — 4(5, A, w)) Vwd(S. A w)
Aw = a(gr(S,A) — §(S,A,w))Vwi§(S, A, w)

Lecture 6: Value Function Approximation
LIncremental Methods

LIncremental Control Algorithms

Linear Action-Value Function Approximation

m Represent state and action by a feature vector

X1(57 A)

X(S, A) =
xn(S, A)

m Represent action-value fn by linear combination of features

4(S, A w) =x(S,A)Tw =Y " x(S, A)w;
j=1

m Stochastic gradient descent update

Vwi(S,Aw) =x(S, A)
Aw a(qﬂ(S,A) - a(S,A,W))X(S,A)

Lecture 6: Value Function Approximation
L Batch Methods

Batch Reinforcement Learning

Gradient descent is simple and appealing

|

m But it is not sample efficient

m Batch methods seek to find the best fitting value function
|

Given the agent's experience (“training data”)

Lecture 6: Value Function Approximation
L Batch Methods
L Least Squares Prediction

Least Squares Prediction

m Given value function approximation ¥(s,w) & v.(s)

m And experience D consisting of (state, value) pairs

D= {<517 V17r>; <527 V£r>7 RXE <5T7 V;r'>}

m Which parameters w give the best fitting value fn V(s,w)?
m Least squares algorithms find parameter vector w minimising
sum-squared error between ¥(s;,w) and target values v/,

T

LS(w) =) (vf — 0(st, w))?

Lecture 6: Value Function Approximation
L Batch Methods
L Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of (state, value) pairs

D= {(51, V{r>7 <527 V§T>7) <5T7 V¥>}

Repeat:
Sample state, value from experience

(s,v™) ~D
Apply stochastic gradient descent update

Aw = a(v™ — V(s,w))Vu (s, w)

Lecture 6: Value Function Approximation
L Batch Methods
L Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of (state, value) pairs

D= {(51, V{r>7 <527 V§T>7) <5T7 V¥>}

Repeat:
Sample state, value from experience

(s,v™) ~D
Apply stochastic gradient descent update
Aw = a(v™ — V(s,w))Vu (s, w)
Converges to least squares solution

w”™ = argmin LS(w)
w

Deep Reinforcement Learning

» Can we apply deep learning to RL?

v

Use deep network to represent value function / policy / model

v

Optimise value function / policy /model end-to-end

v

Using stochastic gradient descent

Bellman Equation

» Value function can be unrolled recursively

Q"(s,a) =E [ft+1 +Yrero + s+ | 's, 3]
— By [r +1Q7(s, &) | 5,4]

» Optimal value function Q*(s, a) can be unrolled recursively

Q*(s,a) = Eg [r +7 max Q*(s',d') | s, a]
a/

> Value iteration algorithms solve the Bellman equation

Quia(s:2) = Ex |+ max O(s.) | 5]
a

Lecture 6: Value Function Approximation
L Batch Methods
L Least Squares Prediction

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

Take action a; according to e-greedy policy

Store transition (s;, at, re+1, Se+1) in replay memory D

m
m

m Sample random mini-batch of transitions (s, a, r,s") from D
m Compute Q-learning targets w.r.t. old, fixed parameters w™—
[

Optimise MSE between Q-network and Q-learning targets

Li (Wi) = IEs,a,r,s’w’D,-

2
<r + 7 max Q(s',asw) — Q(s, a; Wi))]

m Using variant of stochastic gradient descent

Deep Q-Learning

» Represent value function by deep Q-network with weights w

Q(s,a,w) ~ Q" (s, a)

» Define objective function by mean-squared error in Q-values

2
Lw)=E || r+vymaxQ(s',a',w) — Q(s,a,w)
target
» Leading to the following Q-learning gradient
0L(w) ;o 0Q(s,a,w)
D =E [(r+7 max Q(s',a,w)— Q(s,a,w) B

» Optimise objective end-to-end by SGD, using %

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
> Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients

Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent’s own experience
» Take action a; according to e-greedy policy
» Store transition (s¢, a, fe41, St+1) in replay memory D
» Sample random mini-batch of transitions (s, a, r, s’) from D

» Optimise MSE between Q-network and Q-learning targets, e.g.

‘C(W) = IEs,a.,r.s’ND

2
(r 5 max Qs &, w) — Q(s. 2, w>)]

Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

» Compute Q-learning targets w.r.t. old, fixed parameters w™
r+~ max Q(s’,a,w™)
a/

» Optimise MSE between Q-network and Q-learning targets

E(W) = IEs,a,r,s/wD

2
(I’ +7 m:71x Q(sl> alv W_) - Q(S, a, W))]

> Periodically update fixed parameters w™ < w

Stable Deep RL (3): Reward/Value Range

v

DQN clips the rewards to [—1,+1]
This prevents Q-values from becoming too large

v

v

Ensures gradients are well-conditioned

v

Can't tell difference between small and large rewards

Reinforcement Learning in Atari

o
e S A
=)
NN) (70 .
state /4‘_' N S O . action
VA A Y aIm)“"&';,*))
> i \ A /
S W] T a;
[= &
I\ LN 4
\ \
=
,.,-,-—«— 777" 3

\/’
reward r *

DQN in Atari

v

End-to-end learning of values Q(s, a) from pixels s

v

Input state s is stack of raw pixels from last 4 frames

v

Output is Q(s, a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

[T o

Stack of 4 previous] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games
[Mnih et al.]

DQN Results in Atari

%0008 %000l %009 %00S

%00
1

%00€
1

%002
1

%00L
|

L 1)) 1
[N

Jowsea Jeaur 1seg

|oAdl-uewny mojoq

2A0qE Jo [aA3J-uBWINY JB

aBuansy s,eWnzajuop
23 sjeAud
JeyneIn
ayqisosd
spioialsy
uewoed 'S\
Buimog

jung a|gnoag
1sanbeag
ainuap

ually

Jeplwy

prey JaAy
1SIeH Yueg
apadiuad
puewwo) Jaddoyd
IOM 1O PIeZIM
uoz apeg
Xusjsy
‘O¥3IH
¥eg.0

AaxooH 80|
umoq pue dn
Aquaq Buiysiy
oinpuz

10lid BwiL
Aemaaiy
Jaisey ng-Buny
weyyueng
Jopiy weag
ssapeAu| 20eds
Buod

puog sawer
siua
oosebuey
Jauuny peoy
Hnessy

sy

QwWe siyL aweN
¥oRRY Uowaq
Jaydoo
Jequig Azes
shuepy
Juejoqoy
J8UUNY JBlS
noyeasg
Buixog

llequid O8pIA

How much does DQN help?

DQN
Q-learning | Q-learning | Q-learning | Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

Conclusion

v

RL provides a general-purpose framework for Al

v

RL problems can be solved by end-to-end deep learning

v

A single agent can now solve many challenging tasks

v

Reinforcement learning + deep learning = Al

Questions?

“The only stupid question is the one you never ask” -Rich Sutton

