
Deep Reinforcement Learning

David Silver, Google DeepMind

Khimya Khetarpal
Lecture slides - AI4Good Summer Lab - 2019
Slides merged from two different talks/lectures of David Silver

Agent and Environment

state

reward

action

at

rt

st I At each step t the agent:
I Receives state st
I Receives scalar reward rt
I Executes action at

I The environment:
I Receives action at
I Emits state st
I Emits scalar reward rt

Policies and Value Functions

I Policy ⇡ is a behaviour function selecting actions given states

a = ⇡(s)

I Value function Q⇡(s, a) is expected total reward
from state s and action a under policy ⇡

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + ... | s, a

⇤

“How good is action a in state s?”

Lecture 6: Value Function Approximation

Introduction

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

Backgammon: 1020 states

Computer Go: 10170 states

Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?

Lecture 6: Value Function Approximation

Introduction

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

Backgammon: 1020 states

Computer Go: 10170 states

Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?

Lecture 6: Value Function Approximation

Introduction

Value Function Approximation

So far we have represented value function by a lookup table

Every state s has an entry V (s)
Or every state-action pair s, a has an entry Q(s, a)

Problem with large MDPs:
There are too many states and/or actions to store in memory
It is too slow to learn the value of each state individually

Solution for large MDPs:
Estimate value function with function approximation

v̂(s,w) ⇡ v⇡(s)

or q̂(s, a,w) ⇡ q⇡(s, a)

Generalise from seen states to unseen states
Update parameter w using MC or TD learning

Lecture 6: Value Function Approximation

Introduction

Types of Value Function Approximation

s s sa

v(s,w) q(s,a,w) q(s,a1,w) q(s,am,w)…

w w w

^ ^ ^ ^

Lecture 6: Value Function Approximation

Introduction

Which Function Approximator?

There are many function approximators, e.g.

Linear combinations of features

Neural network

Decision tree

Nearest neighbour

Fourier / wavelet bases

...

Lecture 6: Value Function Approximation

Introduction

Which Function Approximator?

We consider di↵erentiable function approximators, e.g.

Linear combinations of features

Neural network

Decision tree

Nearest neighbour

Fourier / wavelet bases

...

Furthermore, we require a training method that is suitable for
non-stationary, non-iid data

Lecture 6: Value Function Approximation

Incremental Methods

Gradient Descent

Gradient Descent

Let J(w) be a di↵erentiable function of
parameter vector w

Define the gradient of J(w) to be

rwJ(w) =

0

BB@

@J(w)
@w1
...

@J(w)
@wn

1

CCA

To find a local minimum of J(w)

Adjust w in direction of -ve gradient

�w = �1

2
↵rwJ(w)

where ↵ is a step-size parameter

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Action-Value Function Approximation

Approximate the action-value function

q̂(S ,A,w) ⇡ q⇡(S ,A)

Minimise mean-squared error between approximate
action-value fn q̂(S ,A,w) and true action-value fn q⇡(S ,A)

J(w) = E⇡
⇥
(q⇡(S ,A)� q̂(S ,A,w))2

⇤

Use stochastic gradient descent to find a local minimum

�1

2
rwJ(w) = (q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

�w = ↵(q⇡(S ,A)� q̂(S ,A,w))rwq̂(S ,A,w)

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Linear Action-Value Function Approximation

Represent state and action by a feature vector

x(S ,A) =

0

B@
x1(S ,A)

...
xn(S ,A)

1

CA

Represent action-value fn by linear combination of features

q̂(S ,A,w) = x(S ,A)>w =
nX

j=1

xj(S ,A)wj

Stochastic gradient descent update

rwq̂(S ,A,w) = x(S ,A)

�w = ↵(q⇡(S ,A)� q̂(S ,A,w))x(S ,A)

Lecture 6: Value Function Approximation

Batch Methods

Batch Reinforcement Learning

Gradient descent is simple and appealing

But it is not sample e�cient

Batch methods seek to find the best fitting value function

Given the agent’s experience (“training data”)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Least Squares Prediction

Given value function approximation v̂(s,w) ⇡ v⇡(s)

And experience D consisting of hstate, valuei pairs

D = {hs1, v⇡1 i, hs2, v⇡2 i, ..., hsT , v⇡T i}

Which parameters w give the best fitting value fn v̂(s,w)?

Least squares algorithms find parameter vector w minimising
sum-squared error between v̂(st ,w) and target values v⇡t ,

LS(w) =
TX

t=1

(v⇡t � v̂(st ,w))2

= ED
⇥
(v⇡ � v̂(s,w))2

⇤

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of hstate, valuei pairs

D = {hs1, v⇡1 i, hs2, v⇡2 i, ..., hsT , v⇡T i}

Repeat:

1 Sample state, value from experience

hs, v⇡i ⇠ D

2 Apply stochastic gradient descent update

�w = ↵(v⇡ � v̂(s,w))rwv̂(s,w)

Converges to least squares solution

w⇡ = argmin
w

LS(w)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of hstate, valuei pairs

D = {hs1, v⇡1 i, hs2, v⇡2 i, ..., hsT , v⇡T i}

Repeat:

1 Sample state, value from experience

hs, v⇡i ⇠ D

2 Apply stochastic gradient descent update

�w = ↵(v⇡ � v̂(s,w))rwv̂(s,w)

Converges to least squares solution

w⇡ = argmin
w

LS(w)

Deep Reinforcement Learning

I Can we apply deep learning to RL?

I Use deep network to represent value function / policy / model

I Optimise value function / policy /model end-to-end

I Using stochastic gradient descent

Bellman Equation

I Value function can be unrolled recursively

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + ... | s, a

⇤

= Es0
⇥
r + �Q⇡(s 0, a0) | s, a

⇤

I Optimal value function Q⇤(s, a) can be unrolled recursively

Q⇤(s, a) = Es0


r + � max

a0
Q⇤(s 0, a0) | s, a

�

I Value iteration algorithms solve the Bellman equation

Qi+1(s, a) = Es0


r + � max

a0
Qi (s

0, a0) | s, a
�

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

Take action at according to ✏-greedy policy

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s 0) from D
Compute Q-learning targets w.r.t. old, fixed parameters w�

Optimise MSE between Q-network and Q-learning targets

Li (wi) = Es,a,r ,s0⇠Di

"✓
r + � max

a0
Q(s 0, a0;w�

i)� Q(s, a;wi)

◆2
#

Using variant of stochastic gradient descent

Deep Q-Learning
I Represent value function by deep Q-network with weights w

Q(s, a,w) ⇡ Q⇡(s, a)

I Define objective function by mean-squared error in Q-values

L(w) = E

2

664

0

BB@r + � max
a0

Q(s 0, a0,w)
| {z }

target

� Q(s, a,w)

1

CCA

23

775

I Leading to the following Q-learning gradient

@L(w)

@w
= E

✓
r + � max

a0
Q(s 0, a0,w)� Q(s, a,w)

◆
@Q(s, a,w)

@w

�

I Optimise objective end-to-end by SGD, using @L(w)
@w

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
I Successive samples are correlated, non-iid

2. Policy changes rapidly with slight changes to Q-values
I Policy may oscillate
I Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown
I Naive Q-learning gradients can be large

unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay
I Break correlations in data, bring us back to iid setting
I Learn from all past policies

2. Freeze target Q-network
I Avoid oscillations
I Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
I Robust gradients

Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent’s own experience

I Take action at according to ✏-greedy policy

I Store transition (st , at , rt+1, st+1) in replay memory D
I Sample random mini-batch of transitions (s, a, r , s 0) from D
I Optimise MSE between Q-network and Q-learning targets, e.g.

L(w) = Es,a,r ,s0⇠D

"✓
r + � max

a0
Q(s 0, a0,w)� Q(s, a,w)

◆2
#

Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

I Compute Q-learning targets w.r.t. old, fixed parameters w�

r + � max
a0

Q(s 0, a0,w�)

I Optimise MSE between Q-network and Q-learning targets

L(w) = Es,a,r ,s0⇠D

"✓
r + � max

a0
Q(s 0, a0,w�)� Q(s, a,w)

◆2
#

I Periodically update fixed parameters w� w

Stable Deep RL (3): Reward/Value Range

I DQN clips the rewards to [�1,+1]

I This prevents Q-values from becoming too large

I Ensures gradients are well-conditioned

I Can’t tell di↵erence between small and large rewards

Reinforcement Learning in Atari

state

reward

action

at

rt

st

DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
[Mnih et al.]

DQN Results in Atari

How much does DQN help?

DQN

Q-learning Q-learning Q-learning Q-learning
+ Replay + Replay

+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

Conclusion

I RL provides a general-purpose framework for AI

I RL problems can be solved by end-to-end deep learning

I A single agent can now solve many challenging tasks

I Reinforcement learning + deep learning = AI

Questions?

“The only stupid question is the one you never ask” -Rich Sutton

